Trans-splicing of the mod(mdg4) complex locus is conserved between the distantly related species Drosophila melanogaster and D. virilis.
نویسندگان
چکیده
The modifier of mdg4, mod(mdg4), locus in Drosophila melanogaster represents a new type of complex gene in which functional diversity is resolved by mRNA trans-splicing. A protein family of >30 transcriptional regulators, which are supposed to be involved in higher-order chromatin structure, is encoded by both DNA strands of this locus. Mutations in mod(mdg4) have been identified independently in a number of genetic screens involving position-effect variegation, modulation of chromatin insulators, apoptosis, pathfinding of nerve cells, and chromosome pairing, indicating pleiotropic effects. The unusual gene structure and mRNA trans-splicing are evolutionary conserved in the distantly related species Drosophila virilis. Chimeric mod(mdg4) transcripts encoded from nonhomologous chromosomes containing the splice donor from D. virilis and the acceptor from D. melanogaster are produced in transgenic flies. We demonstrate that a significant amount of protein can be produced from these chimeric mRNAs. The evolutionary and functional conservation of mod(mdg4) and mRNA trans-splicing in both Drosophila species is furthermore demonstrated by the ability of D. virilis mod(mdg4) transgenes to rescue recessive lethality of mod(mdg4) mutant alleles in D. melanogaster.
منابع مشابه
Extensive exon reshuffling over evolutionary time coupled to trans-splicing in Drosophila.
The relative position of exons in genes can be altered only after large structural mutations. These mutations are frequently deleterious, impairing transcription, splicing, RNA stability, or protein function, as well as imposing strong inflexibility to protein evolution. Alternative cis- or trans-splicing may overcome the need for genomic structural stability, allowing genes to encode new prote...
متن کاملTransgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila.
The Drosophila BTB domain containing gene mod(mdg4) produces a large number of protein isoforms combining a common N-terminal region of 402 aa with different C termini. We have deduced the genomic structure of this complex locus and found that at least seven of the mod(mdg4) isoforms are encoded on both of its antiparallel DNA strands, suggesting the generation of mature mRNAs by trans-splicing...
متن کاملCloning and analysis of the mobile element gypsy from D. virilis.
The homologue of the Drosophila melanogaster mobile element gypsy was cloned from the distantly related species D. virilis. It has three ORFs highly homologous to those of the element from D. melanogaster. gypsy from D. virilis appears to be actively transcribed and is capable of transposition. Comparison of the untranslated regions of both elements revealed conserved sequences including those ...
متن کاملTrans-splicing as a novel mechanism to explain interallelic complementation in Drosophila.
Two mutant alleles of the same gene, each located in one of the two homologous chromosomes, may in some instances restore the wild-type function of the gene. This is the case with certain combinations of mutant alleles in the mod(mdg4) gene. This gene encodes several different proteins, including Mod(mdg4)2.2, a component of the gypsy insulator. This protein is encoded by two separate transcrip...
متن کاملELAV-mediated 3'-end processing of ewg transcripts is evolutionarily conserved despite sequence degeneration of the ELAV-binding site.
Regulation of alternative mRNA processing by ELAV (embryonic lethal abnormal visual system)/Hu proteins is mediated by binding to AU-rich elements of low complexity. Since such sequences diverge very rapidly during evolution, it has not been clear if ELAV regulation is maintained over extended phylogenetic distances. The transcription factor Erect wing (Ewg) is a major target of ELAV in Drosoph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 169 2 شماره
صفحات -
تاریخ انتشار 2005